Токоограничивающий реактор

      Здравствуйте! Токоограничивающий реактор предназначен для ограничения величины токов, возникающих при коротких замыканиях на линиях или шинах станций и подстанций. По сути, это катушка индуктивности, подчиняющаяся закону коммутации, который гласит, что ток в цепи с индуктивностью не может изменяться скачкообразно.

Характеристики

Реактор характеризуется следующими величинами:

• Номинальное напряжение.

• Номинальный ток.

• Индуктивное сопротивление, выраженное в процентах.

     Увеличение активного сопротивления устройства, приводит к большему ограничению, протекающего через него, тока короткого замыкания.

     Индуктивное сопротивление аппарата выражается в процентном соотношении и показывает, какая часть от номинального напряжения, при протекании заданного тока, рассеивается на индуктивном сопротивлении.

Применение

     Токоограничивающие реакторы устанавливаются последовательно нагрузке, на отходящих линиях электростанций и подстанций, на участках, где требуется уменьшить величину тока короткого замыкания. Ограничение величины протекающего тока, позволяет применять менее сложную аппаратуру релейной защиты и автоматики, а также высоковольтные выключатели, с меньшим максимальным током отключения. Все это позволяет значительно уменьшить стоимость распределительных устройств.

Устройство и принцип действия

     Конструктивно реактор представляет собой катушку индуктивности, обладающую большим индуктивным и малым активным сопротивлением. Катушка состоит и медного или алюминиевого провода, с сечением, допускающим протекание номинального тока электроустановки, намотанного на опору из изоляционного материала.

     При нормальной работе сети, падение напряжения на обмотке реактора составляет 3 – 4%. В момент возникновения в электрической системе токов короткого замыкания, падение напряжения на нем многократно возрастает, что позволяет ограничить величину тока, до приемлемых величин.

     В аппаратах ограничения тока не применяются стальные сердечники, так как при возникновении короткого замыкания на линии, происходит насыщение стали, и реактивное сопротивление катушки резко уменьшается, вследствие чего она теряет свои токоограничивающие свойства.

     При проектировании схем следует помнить, что если на линиях электропередач применяется система высокочастотной связи или высокочастотной защиты от повреждений, установленный реактор может гасить частоты технологии PLC.

Виды реакторов

По типу установки реакторы делятся на:

• Устройства наружной установки. Предназначены для эксплуатации под открытым небом, без дополнительной защиты от непогоды.

• Аппараты внутреннего исполнения. Применяются только в закрытых помещениях (ЗРУ), обеспечивающих защиту от внешней среды.

По классу напряжения:

• Среднего напряжения (3 – 35 кВ).

• Высокого напряжения (110 – 500 кВ).

По назначению:

• Межсекционные. Предназначены для создания электрической связи между секциями распределительного устройства, включаются они последовательно с межсекционным выключателем. В момент возникновения короткого замыкания на одной из секций, токоограничивающий аппарат предотвратит бросок тока на неповрежденной секции и предотвратит ложное срабатывание ее защит.

• Фидерные. Устанавливаются на отходящие фидерные линии и предназначены для дугогашения при коротком замыкании на линии. Дугогасительный реактора ограничит ток и не даст развиться дуге, предотвратив повреждение оборудования. Применяются в сетях с глухозаземленной нейтралью.

• Фидерные групповые. Имеют то же назначение и принцип действия, что и фидерные реакторы, но предназначены для установки на группу отходящих присоединений.

По конструкции:

Броневые. Для экономии дорогостоящих материалов, при условии точного расчета токов короткого замыкания, способных возникнуть в электрической сети, допускается применять токоограничивающие реакторы с сердечником из броневой конструкции из электротехнической стали. Данные устройства обладают меньшей массой, нежели их аналоги, изготовленные по другим технологиям, размерами и стоимостью. К недостаткам броневого реактора можно отнести возможность потери им токоограничивающих свойств, при прохождении в сети токов короткого замыкании, выше, чем токи, на которые он рассчитан.

Бетонные. Широко распространены на подстанциях до 35 кВ. Имеют малую стоимость и неприхотливы к условиям эксплуатации. Аппаратам такого рода требуется минимальное техническое обслуживание (осмотр и протяжка соединений), так как они изготавливаются из витков многожильного, изолированного провода, залитого в бетонное основание. При возникновении токов короткого замыкания, все детали устройства испытывают большие механические нагрузки, поэтому бетон для изготовления основания применяется особой прочности (вибрационный замес). При прохождении больших токов, бетонные реакторы могут быть оснащены принудительным охлаждением, в таком случае в маркировку аппарата добавляется буква «Д» — дутье. Катушки реактора располагаются встречно, для уменьшения суммарных магнитных потоков, возникающих при больших токах короткого замыкания.

Масляные. Применяются в высоковольтных сетях (свыше 35 кВ). На каждую фазу приходится свой герметичный бак с маслом, в котором уложены витки катушки индуктивности. Масло является изолятором и одновременно охлаждает катушку, предотвращая ее перегрев и разрушение реактора. Стенки бака предохраняются от нагрева при помощи специальных магнитных шунтов и электромагнитных экранов.

     Магнитный шунт. Представляет собой пакеты листовой, электротехнической стали, установленные внутри масляного бака реактора. Шунт обладает очень малым магнитным сопротивлением, благодаря чему магнитный поток катушки реактора замыкается через него, а не через стенки бака.

     Электромагнитный экран. Обмотки реактора обкладываются короткозамкнутыми витками из медного или алюминиевого провода, возникающее в этих витках электромагнитное поле, противодействует полю, наводимому катушками устройства. В результате чего, сила действия основного поля значительно ослабевает или исчезает вовсе.

     Во избежание разрыва бака, при перегреве реактора и в результате повышенном газообразовании масла, все аппараты, рассчитанные на напряжение 500 кВ и выше, оснащаются специальными устройствами газовой защиты (газовыми реле). Которые при закипании масла выдают команду на отключение реактора, либо на сигнал обслуживающему персоналу.

Сдвоенные. Используются для уменьшения падения напряжения на линиях большой протяженностью. Конструктивно представляют две обмотки на каждой фазе, включаемые встречно, в результате чего индуктивность реактора стремиться к нулю, а падение напряжение уменьшается. При возникновении токов короткого замыкания, магнитное поле катушки резко возрастает и реактора работает в обычном режиме токоограничения. К недостаткам устройства можно отнести его большие массу и габариты, а также значительную стоимость (примерно в два раза, по сравнению с реактором другого исполнения).

Сухие. Являются самой новой разработкой, внедряемой в промышленность. Они широко применяются в сетях с напряжением до 220 кВ. Сухой реактор представляет собой катушку индуктивности из кабелей, намотанную на диэлектрическом каркасе. Аппараты сухого исполнения имеют малую стоимость и хорошие показатели, как по ограничению токов короткого замыкания, так и по охлаждению обмоток.

Сглаживающие реакторы. Этот электрический аппарат следует отметить отдельно. Сглаживающие реакторы применяются для уменьшения пульсаций выпрямленного тока в цепях питания мощных электродвигателях электровозов и электропоездов. Устройство представляет собой катушку со стальным сердечником, обладающую малым активным сопротивлением, в результате чего, реактор не оказывает влияния на постоянную составляющую выпрямленного тока. Однако переменный ток, присутствующий в цепи, рассеивается на индуктивном сопротивлении катушки.

Заключение

      В статье рассказано о назначении и видах реакторов, применяемых для ограничения тока в цепи. Самым важным в работе этих устройства является снижение тока короткого замыкания, который должен разорвать высоковольтный выключатель и уменьшение возникающей дуги (для дугогасящих реакторов) в сетях с глухозаземленной нейтралью. Дуга не возникает, так как для ее создания не хватит тока в цепи, в результате чего, оборудование останется неповрежденным, и будет снижен риск для жизни и здоровья обслуживающего персонала.

     Однако следует помнить, что применение токоограничивающего реактора, требует проведения более сложных расчетов для устройств релейной защиты и автоматики, а также то, что несоответствие параметров аппарата, значениям сети, не обеспечит необходимого снижения тока.


Добавить комментарий

Ваш e-mail не будет опубликован. Обязательные поля помечены *